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B Goal e Common solution approach
The literature on muli- >calarization methods

objective optimization Is vast.
However, In practice not only
the most commonly used
approaches can yield bad
qguality solutions, but the
noisy performance Is often
neglected and the problem is
treated as deterministic. In
this work we highlight some
of the most crucial pitfalls
when using common multi-
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A genetic algorithm Is often used as the base
optimization method. The problem is then transformed
Into a (non)linear single-objective problem
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optimization of adhesive bonding process in constrained settings". In Optimization and Learning: International Conference, OLA 2023 (to appear).

s . . Results
objective algorithms IN | | S | o | o
. Experimental setting: a bi-objective problem is optimized using a population size of 50 and 100
practice. . - . e . L .
\ / generations. We perform 50 macro-replications using the same Initial design. Scalarization weights
are initially 4; = 0.5,i = {1, 2} and z = 0.05.
ﬁ \ The 1same weights for each macro-replication Weigqts are different for each macro-replication
Motivation Linear scalarization 0_8\...,, 08
* Multi-objective optimization | . points in non-convex fronts may ol 16l
problems are characterized not be found z =
by having more than a Single  Most solutions found are on the 0.4 0.4
optimal solution. In fact, often extremes of the PF o3l !

e * Fixing or changing weights o o o _,
there are Inflnltely many Seems to have not a dlrect 0 * Aproximated Pargto front ‘ 0 * Aproximated Pargto front ‘
equally optimal solutions. impact in the approximate fronts 0 on 1 ° ob 1 1
The Paret()-()p'“ mal Set |S The $ame weights for each macro-replication Weigr1|ts are different for each macro-replication
then approximated with a Augme”tle‘j_ Cr:_ebyCheV \"{
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subset of discrete solutions

that reveal the essential . The z parameter ensures that 08 06 “
trade-offs of the conflicting weakly dominated points are S0 S o .
objectives. g\;/ocl:i?wging the weights we are \’ \
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The literature offers a great able to find all the points in the et 0\ Pt
variety of methods ranging Pareto front 0 - .,,1 0, - .
from Dbilo-inspired search Obj 1 : Obj 1
. . What happens when the performance is noisy?
paradlng, tO Sequentlal True performance Observed performance at 7 Observed performance at » +1 We incur
mOdeI'baSEd Optlmlzatl()n a5 6)0@9%)3%0 ggiﬁg;trggtpoints, 4_5_‘ Q%O&)gczjgo @OO | . O i%ao;%ti?m;rtggpoints i “%O&CO;;QO @OQ . §§£§an?;; roints:  MISclassification
algorithms, to  analytical meeee,, .OOC@;%%OO | “80“?5;@50 "8 9000 I 'R.Cféjigo “d n000 ~ errors that change
methods. Most of these @ - el s 2°a0 ¢ ) *e,° 9 | everytimeanew
thod trivial to b - « To | 22 of =° Q)O i 25 %o replication is

_me Ods are DOH- ”VI_a O be 12 %o o8 | 1: 33 o | ’ 2" ~ allocated. We
Implemented In practice, and % © ) ©gq © p “4 °  propose a method
a number of issues are often | % e 00 e e o0 itgsrl‘;‘é“%a[tze] this
over-looked. For example: : ' : ' o S

noisy performance, multi- ‘ m=2 | m=3 | m=5 | m=7 | m=9 Sta_nd_ard qguality metrics for determi_nistic multiobjective

_ Total number of points 100 300 1000 1200 1500 optimizers no longer work due to noise.
mOda|1 nOn-IInear and Number of non-dominated points 20 200 500 700 900 e Misclassification by exclusion (MCE) We
computationally expensive Deterministic HV 03323 | 05585 | 0.8167 | 09172 | 0.9658 observe a point that is truly non-dominated as
' : Noisy HV 0.4658 | 0.7020 | 0.8842 | 0.9418 | 0.3566 dominated.

fUﬂCtIOﬂIS, handlmg of Deterministic /GD 0.0637 | 0.1844 | 0.8489 | 1.7357 | 3.0591 * Misclassification by inclusion (MCI): We observe
constraints, etc.). Noisy 1GD arse Toaes T ooros | 19eas 30100 a point that is truly dominated as non-dominated.
‘\\When using these P S " s | a0 . . The number of errors grows exponentially with growing
tachni tai " RS ; ” o e | 200 number of objectives, and the values for standard

echniques, cer alﬂ- cavea_s K L metrics like HV and IGD are largely misleading.

have to be considered In

order for the methods to [ | ~ Further reading | O
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