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ABSTRACT

Automotive companies are increasingly looking for ways to make their products lighter, using novel materials
and novel bonding processes to join these materials together. Finding the optimal process parameters for such
adhesive bonding process is challenging. In this research, we successfully applied Bayesian optimization
using Gaussian Process Regression and Logistic Regression, to efficiently (i.e., requiring few experiments)
guide the design of experiments to the Pareto-optimal process parameter settings.

1 INTRODUCTION

The adhesive bonding process we consider consists of different steps: first, plasma is applied to the materials,
next glue is applied, and finally the materials are cured in an oven. The optimization problem is bi-objective:
the goal is to find the plasma process settings that maximize break strength, while minimizing the associated
production costs. We consider six process parameters: 1) whether the materials are pre-processed (Yes or
No), 2) the power setting of the plasma torch (300W - 500W), 3) the speed at which the plasma torch
moves over the sample (50 mm/s - 250 mm/s), 4) the distance between the plasma torch nozzle and the
sample (0 mm - 50 mm), 5) the number of passes of the plasma torch over the sample (5-20), and 6) the
time between the plasma treatment and the application of the glue (1 min - 60 min).

Real-life experiments involve the application of a stress test to the joined components: the break strength
at which the components come apart is measured, as well as the type of breach (substrate breach, cohesive
breach, or adhesive breach) and the occurrence of visual damage. Importantly, process settings that lead
to a substrate or cohesive breach or that imply visual damage should be avoided. The break strength is
noisy: a given set of process parameters may yield different values in different experiments. As real-life
physical process experiments are time expensive (requiring hours for a single replication), a computer
simulator of the adhesive bonding process was developed by the Joining & Materials Lab of Flanders Make
(flandersmake.be/en) to facilitate the development and assess the efficiency of the algorithm. All results
presented here are thus obtained with this simulator.

2 METHOD

We start with an initial latin hypercube sample consisting of ng parameter sets, which we evaluate using
the simulator. We use augmented Tchebycheff scalarization to transform the two objectives into a single
objective, and apply Gaussian Process Regression (GPR) with heteroscedastic noise (Ankenman, Nelson,
and Staum 2008) to model this function. Next, the algorithm iteratively selects a single new design (referred
to as “infill point”) to evaluate, by maximizing an infill criterion (using the Particle Swarm optimization
algorithm). Our infill criterion consists (for any arbitrary point) of the Modified Expected Improvement
(Gonzalez, Jalali, and Van Nieuwenhuyse 2020) multiplied with the Probability of Feasibility of the point
(estimated by a Logistic Regression Classifier, LRC (Friedman, Hastie, Tibshirani, et al. 2009)). The
simulation results of the infill point are then used to update the GPR and LRC models, and the algorithm
continues to iterate until a stopping criterion is reached.
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3 RESULTS AND CONCLUSIONS

We applied a Latin Hypercube sampling of ng = 30 initial design points. Figure la shows the Pareto
optimal solutions obtained with our algorithm (after 180 iterations). To assess the quality of the solutions,
we compare the results to those obtained with NSGA-II (using a population size of 30, and allowing for
180 generations). As shown in Figure 1b, our algorithm converges to a hypervolume that is superior to
the one obtained with NSGA-II, requiring only a fraction of the function evaluations (210 vs. 5400); in
fact, as evident from the figure, the hypervolume stabilizes already after +/- 50 infill points.
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(a) Break strength and cost of the adhesive bonding (b) Evolution of the hypervolume of the feasible solutions
process. in the Pareto front.

Figure 1: Multi-objective optimization results (only feasible Pareto solutions are considered).

Our results show that the use of machine learning techniques holds great promise in solving complex
and expensive optimization problems. In this case, the use of the infill criterion allows the algorithm to
efficiently search for the Pareto-optimal plasma settings, exploiting the information that has been learned
from the already observed process settings through the GPR and LRC models. Future research will focus
on the development of a generic tool, allowing lab experts to apply this type of algorithm to other process
optimization problems.

ACKNOWLEDGMENTS

This research was supported by the Al Flanders Research Program (https://airesearchflanders.be), and the
Research Foundation-Flanders (FWO Grant 1216021N).

REFERENCES

Ankenman, B., B. L. Nelson, and J. Staum. 2008. “Stochastic kriging for simulation metamodeling”. In
2008 Winter Simulation Conference, 362-370. IEEE.

Friedman, J., T. Hastie, R. Tibshirani et al. 2009. The elements of statistical learning: Data mining,
inference, and prediction. Springer series in statistics New York.

Gonzalez, S. R., H. Jalali, and I. Van Nieuwenhuyse. 2020. “A multiobjective stochastic simulation
optimization algorithm”. European Journal of Operational Research 284(1):212-226.



	INTRODUCTION
	METHOD
	RESULTS AND CONCLUSIONS

