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Motivation

Need for better fuel efficiency

Results in lighter bodies, new materials

Which tend to be more fragile, more difficult to join

The right bonding process will improve strength

• Multi-objective optimization
o Minimize cost VS. Maximize break strength

• Real experimentation is expensive and yield noisy outputs
o The same process configuration generates different break strength/type of failure

• Different types of failure
• Adhesive, cohesive, or substrate failure

Objective

Efficiently find good process parameters with a minimal set of experiments, and 
considering the trade-off between product performance (strength) and production cost
• Uncertain performance
• Constrained optimization (feasibility)

Burned sample Adhesive failure Substrate failure

Multi-objective optimization
Minimizing all the objectives, the dominance of two configurations 𝜆1, 𝜆2 
refers to:

• 𝜆1 ≺ 𝜆2 , 𝜆1 dominates 𝜆2 iff 𝑓𝑖(𝜆1) ≤ 𝑓𝑖 𝜆2 , ∀ 𝑖 ∈ 1, … , 𝑚 , and 
∃ 𝑖 ∈ 1, … , 𝑚  such that 𝑓𝑖(𝜆1) < 𝑓𝑖 𝜆2

• 𝜆1 ≺≺ 𝜆2 when 𝜆1 strictly dominates 𝜆2 iff 𝑓𝑖(𝜆1) < 𝑓𝑖 𝜆2 , ∀ 𝑖 ∈
1, … , 𝑚

dominated solutions

How to solve multi-objective problems?

1. Optimize all the objectives at the same time, 
considering its dominance relation

2. Transform the problem (scalarization functions)

NSGA-II

Augmented Tchebycheff scalarization function

max
j=1,…,m

𝜆𝑗 𝑓𝑗 𝑥 − 𝑧𝑗
∗ + 𝜌 ෍

𝑗=1

𝑚

𝜆𝑗 𝑓𝑗 𝑥 − 𝑧𝑗
∗

Weight for objective j
Ideal value

Small positive value
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Initial design
Optimal 

solution(s)

Metamodel-based optimization

Expensive function

Metamodel Goal:
• Assuming minimization

Build 
metamodel

Calculate 
acquisition 

function

Add new 
point

New point

Gaussian Process with heteroscedastic noise

𝑓 𝑥 = 𝑚 𝑥 + 𝑀 𝑥

unknown response 
function

Mean of the 
process

Realization of a Gaussian 
random field with mean zero 
(covariance function)

Noise observed in 
replication r

𝐶𝑜𝑣 𝑦𝑖 , 𝑦𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗)

+𝜖𝑟(𝑥)

ො𝑦 𝑥∗ = 𝑘∗ 𝑲𝒏 + 𝚺𝝐
−𝟏 𝒀

predictor

Spatial correlation among the new 
point and the observed points

Covariance matrix of the n 
observed points Noise estimation for the n points

Observed response of the n points

Ƹ𝑠2 𝑥∗ = 𝑘∗∗  − 𝑘∗ 𝑲𝒏 + 𝚺𝝐
−𝟏 𝒌∗

𝑻

Uncertainty estimator

Covariance function applied to the new point and itself

Σ𝜖 = 𝐷𝑖𝑎𝑔
𝑉𝑎𝑟 𝑓 𝑥𝑖

𝑟𝑖
, 𝑖 ∈ {1, … , 𝑛}

Function representation:

Predictor and uncertainty estimator:

Approach

▪ Smartly choose initial design

▪ Replicate to account for noise

▪ Latin hypercube sampling

▪ Any experiment with 
noisy outcomes

▪ Simulator provided 
by JMLab

▪ Augmented 
Tchebycheff 
scalarization

▪ Dynamically 
assignment of 
weights 

▪ GP model for noisy outputs

▪ Outcome prediction 
at non-observed 
points

▪ Uncertainty estimate 
of outcomes

▪ Train a classifier

▪ Smartly choose next design point(s) for expensive observation
▪ Infill criterion: Modified Expected Improvement * Probability feasibility

o Particle Swarm Optimization
o Logistic classifier

𝑃(𝑦 = 1|𝑥; Θ) =
1

1 + 𝑒−Θ𝑇𝑥

Experiment design
Process parameters Min Max

Pre-processing 0 1
Plasma power 300 500
Plasma speed 5 250
Distance 0.2 2
Number of passes 1 50
Real time 1 120

NSGA-II with feasibility constraint

P

Q

R

Non-dominated 
sorting of feasible 
and non feasible 
configurations

𝐹1

𝐹2

𝐹2

𝐹1

𝐹2

𝐹3

𝐹4

Crowding distance 
sorting of feasible 
and non feasible 
configurations

P

Rejected

NSGA-II setting:
Population size: 10
Iterations: 20
P. crossover: 0.9
P. mutation: 0.5

Acquisition function optimization: PSO
Swarm size: 30
Function tolerance: 1𝑒−6

Iterations: 1800

Max stall iterations: 10

MO-GP setting:
Covariance function: Gaussian
Initial design size: 30 (LHS)
Iterations: 180

Expensive evaluations for NSGA-II and GP (budget): 210
Comparison metric: Hypervolume indicator
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Results

MO-GP converges to a hypervolume that is superior to the one obtained with NSGA-II, requiring only a fraction 
of the allowed function evaluations

Conclusions and future work

• Machine Learning techniques allows to obtain high-quality solutions within a smaller number of experiments, 
compared with a popular and well-known algorithm such as NSGA-II. 

• The use of the infill criterion allows the algorithm to efficiently search for the Pareto-optimal process settings, 
exploiting the information that has been learned from the already observed process settings (through the 
GPR and LRC models) 

❑ Future research will focus on the development of an interactive software tool, allowing lab experts to validate 
the results generated by the algorithm in a real-life test environment, and to apply this type of algorithm also 
to other process optimization problems.
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