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Objective 2

Hyperparameter:

Influences the learning process

Its optimization is not part of the ML algorithm *  Learning rate

Complex domain (numeric, discrete, etc)

Should be specified before the training phase

Hyperparameter:

*  Number of layers
Number of neurons
Solver (SGD, ADAM) Input

* Activation function jayer

Hidden
layer

Output
layer

Parameter:
Weights

Multi-objective Hyperparameter optimization:
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 Metamodel-based optimization

Replace the expensive
black-box functions by
others of easy execution
« Gaussian Process
Regression (GPR)
 Tree Parzen
Estimators (TPE)



Metamodel-based optimization
Gaussian Process Regression (GPR)
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[llustration of Bayesian optimization. The goal is to minimize the
dashed line using a Gaussian process surrogate (no noise)

GPR with heteroscedastic noise

Mean of the
process

Noise observed in
replication r

y(x) = m(x) + M(x) +€,(x)

Realization of a Gaussian

unknown response
random field with mean zero

function

M (x) can be seen as a function that exhibits spatial correlation
according to a covariance function

COV(}’i; }’j) = k(x;, Xj)

* Gaussian kernel
e Matern kernel



Metamodel-based optimization
Tree Parzen Estimators (TPE), single objective

P(f(x)|X,Y)
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* Proposed algorithm: GPR + TPE GPR: handle uncertainty
TPE: sampling strategy



Combining GPR and TPE for multi-objective hyperparameter optimization

= GPR with = Augmented Tchebycheff
heteroscedastic scalarization with
= Sample k new points noise dynamic weights
f the estimated
rom the BsHmate . 3.b- BUILD 3.a- SCALARIZATION
density [(x) 4- SEARCH using
: ey e METAMODEL based on transform the
= Select the point that and infill criterion : .
scalarized objectives problem

maximizes the MEI

3.2- ESTIMATE DENSITIES
Add new design(s) estimates densities using
poor and good observations

3.1- SPLIT
OBSERVATIONS*

=  Use the dominance rank of
each observation
& OO

1- INITIAL SAMPLE 2- SIMULATION [NO] ‘
: : compute expensive STOP?
design experiments
response [YES] * If all the observations with a
= Smartly choose initial design * Train/validate rank cannot be considered as
= Replicate to account for noise the ML 5- RETURN NON- good observations, greedily select
algorithm DOMINATED POINTS those observations that maximize

= [ HS or random sampling the h |
e hypervolume.
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» Simulation results and final remarks * Analytical test
functions

HPO



Numerical simulations 12 OpenML datasets

Experiment 1: Analytical test functions (d=5) Experiment 2: Hyperparameter optimization (binary classification problem)

0s Multilayer Perceptron (d=5) Decision Tree (d=5)
o max_iter Integer [1,1000] Max_depth Integer [0, 20]
ZDT1
neurons  Integer [5,1000] mss Real [0,0.99]
’ Ir_init* Integer [1071,107°]  msl Integer [1,10]
bl Real [1077,1] max_f Category auto,sqrt,log2
\ b2 Real [1077,1] criterion Category  gini, entropy
activation Category relu
DTLZ7 7
solver Category adam
layers Integer 1
Performance measures:
a0 Support Vector Machine (d=2) «  Minimize error
50 C Real [0.1, 2] * Maximize recall
WFG4 kernel Category linear, poly,
s rbf,sigmoid
* Exponent optimization

D(I]D DéS DISD D':"S 1(‘]0 léS 1‘50 1%5 260



Experimental settings

Algorithm
Setting Problem GPR MOTPE GP_MOTPE

Design space size | Analytical Latin Hypercube sampling: 11d — 1

functions

HPO Random sampling: 11d — 1
Replications Analytical 50

functions

HPO 10 (k value in a cross-validation protocol)
Iterations Analytical 100

functions

HPO
Acquisition function MEI Elrpg MEI
Acquisition function PSO Maximize the acquisition
optimization function on a candidate set
Number of candidates to sample - n. = 1000,y = 0.3
kernel Gaussian - Gaussian




Results

Experiment 1: Analytical test functions (d=5). Hypervolume and Pareto front analysis
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Results
Experiment 2: Hyperparameter optimization. Hypervolume and performance generalization analysis
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ML algorithm

* OQOur algorithm suggests a set of non-dominated HP configurations with the highest hypervolume

in 15 trials
* HP configurations suggested by GPR are less reliable according to the difference between the

validated and generalized hypervolume



Final remarks

* Hybrid algorithm that favour new HP configurations that are likely to be non-
dominated, and that are expected to cause the maximum improvement in the
scalarized objective function

e Our approach performed relatively well on (general) analytical test problems, yet the
performance on the considered HPO problems varies amongst datasets and ML
algorithms (Not free lunch theorem)

« GP_MOTPE showed promising reliability properties (small changes in hypervolume
when the ML algorithm is evaluated on the test set)

Future works

* Handling uncertainty directly with TPE

* Analyse the performance of our algorithm with different sources of uncertainty and
in more complex problems



Thanks
Q/A
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