Alejandro Morales-Hernández 1,2,*, Inneke Van Nieuwenhuyse 1,2, Gonzalo Nápoles 3

¹ Core Lab VCCM, Flanders Make, Belgium

² Data Science Institute, Hasselt University, Belgium

³ Department of Cognitive Science & Artificial Intelligence, Tilburg University, The Netherlands

International Conference in Optimization and Learning, July 18th-20th, Syracuse, Italy

 Multi-objective hyperparameter optimization (MO-HPO)

Metamodel-based optimization

• Proposed algorithm: GPR + TPE

• Simulation results and final remarks

 Multi-objective hyperparameter optimization (MO-HPO)

Metamodel-based optimization

Proposed algorithm: GPR + TPE

Simulation results and final remarks

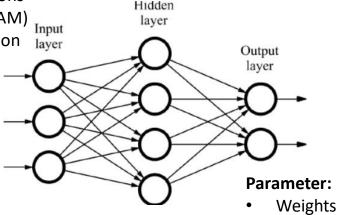
Hyperparameter:

Global search direction (assuming minimization)

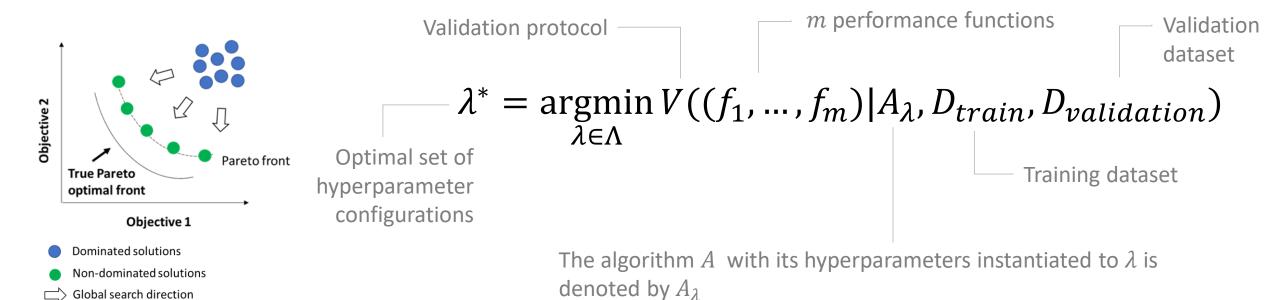
- Influences the learning process
- Its optimization is not part of the ML algorithm
- Complex domain (numeric, discrete, etc)
- Should be specified before the training phase

Hyperparameter:

- Number of layers
- Number of neurons
- Solver (SGD, ADAM) Input
- Activation function
- Learning rate



Multi-objective Hyperparameter optimization:



 Multi-objective hyperparameter optimization (MO-HPO)

Metamodel-based optimization

Proposed algorithm: GPR + TPE

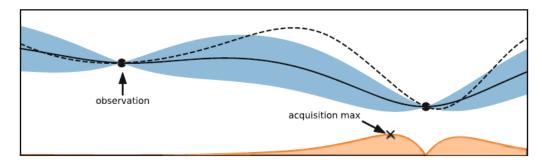
Simulation results and final remarks

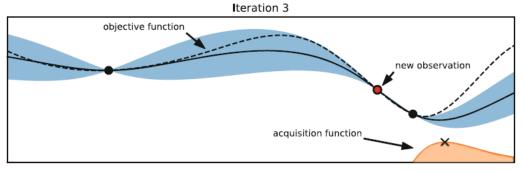
Replace the expensive black-box functions by others of easy execution

- Gaussian Process Regression (GPR)
- Tree Parzen
 Estimators (TPE)

Metamodel-based optimization

Gaussian Process Regression (GPR)





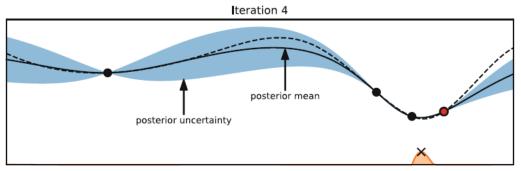
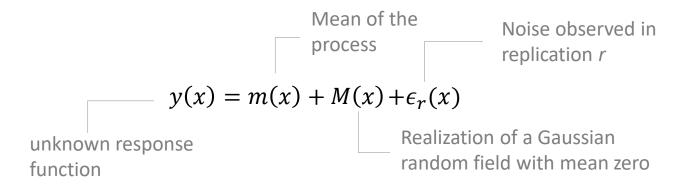


Illustration of Bayesian optimization. The goal is to minimize the dashed line using a Gaussian process surrogate (no noise)

GPR with heteroscedastic noise



M(x) can be seen as a function that exhibits spatial correlation according to a covariance function

$$Cov(y_i, y_j) = k(x_i, x_j)$$

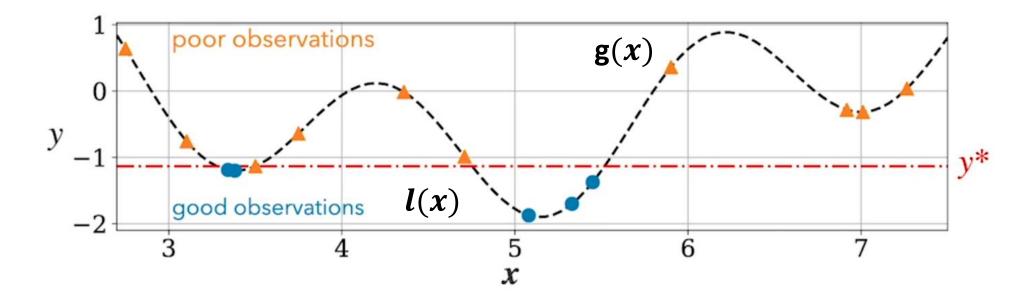
- Gaussian kernel
- Mátern kernel

Metamodel-based optimization

Tree Parzen Estimators (TPE), single objective

$$P(x_*|X,Y) = \begin{cases} l(x) & f(x) < y^*, x \in X \\ g(x) & o.w \end{cases}$$

• y^* is some quantile γ of the observed \mathbf{Y} values, so that $p(y < y^*) = \gamma$



 Multi-objective hyperparameter optimization (MO-HPO)

Metamodel-based optimization

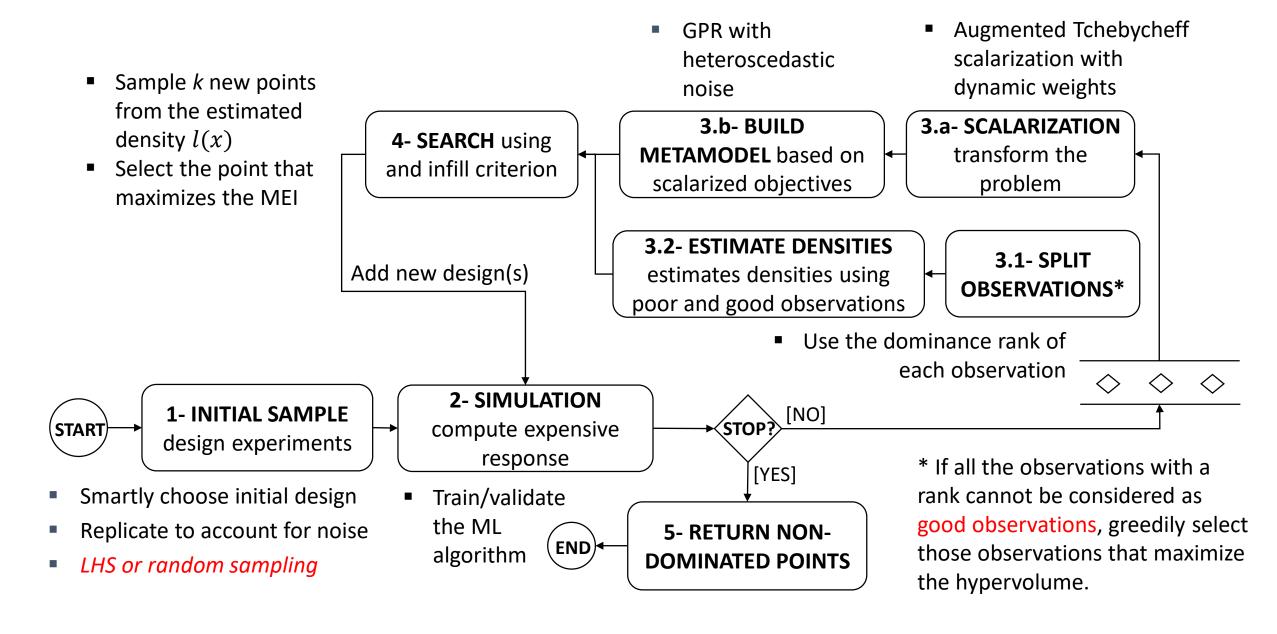
• Proposed algorithm: GPR + TPE

GPR: handle uncertainty

TPE: sampling strategy

Simulation results and final remarks

Combining GPR and TPE for multi-objective hyperparameter optimization



 Multi-objective hyperparameter optimization (MO-HPO)

Metamodel-based optimization

• Proposed algorithm: GPR + TPE

Simulation results and final remarks

- Analytical test functions
- HPO

Numerical simulations

12 OpenML datasets

[0, 20]

[0, 0.99]

[1,10]

auto, sqrt, log2

gini, entropy

Experiment 1: Analytical test functions (d=5)

Experiment 2: Hyperparameter optimization (binary classification problem)

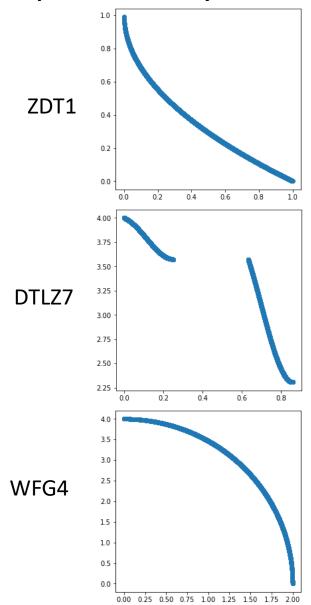
Max depth

mss

msl

max f

criterion



Multilayer Perceptron (d=5)						
max_iter	Integer	[1,1000]				
neurons	Integer	[5, 1000]				
lr_init*	Integer	$[10^{-1}, 10^{-6}]$				
b1	Real	$[10^{-7}, 1]$				
b2	Real	$[10^{-7}, 1]$				
activation	Category	relu				
solver	Category	adam				
layers	Integer	1				
Support Vector Machine (d=2)						

Support Vector Machine (d=2)					
С	Real	[0.1, 2]			
kernel	Category	linear, poly, rbf , sigmoid			

^{*} Exponent optimization

Performance measures:

Minimize error

Decision Tree (d=5)

Integer

Integer

Category

Category

Real

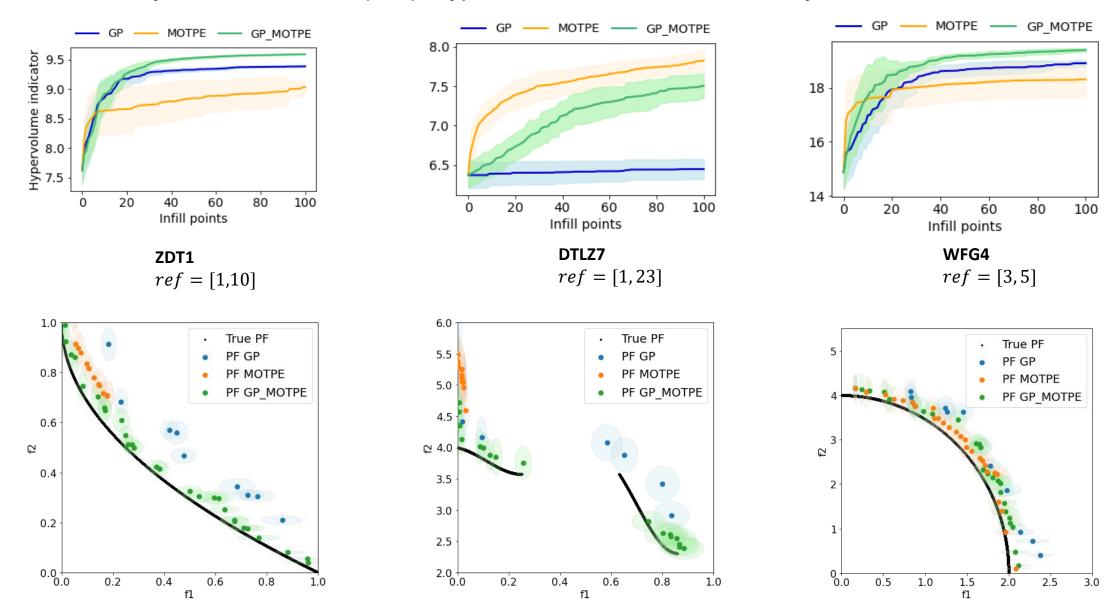
Maximize recall

Experimental settings

		Algorithm				
Setting	Problem	GPR	МОТРЕ	GP_MOTPE		
Design space size	Analytical functions	Latin Hypercube sampling: $11d-1$				
	НРО	Random sampling: $11d-1$				
Replications	Analytical functions	50				
	НРО	10 (k value in a cross-validation protocol)				
Iterations	Analytical functions	100				
	НРО					
Acquisition function		MEI	EI_{TPE}	MEI		
Acquisition function optimization		PSO	Maximize the acquisition function on a candidate set			
Number of candidates to sample		-	$n_c = 1000, \gamma = 0.3$			
kernel		Gaussian	-	Gaussian		

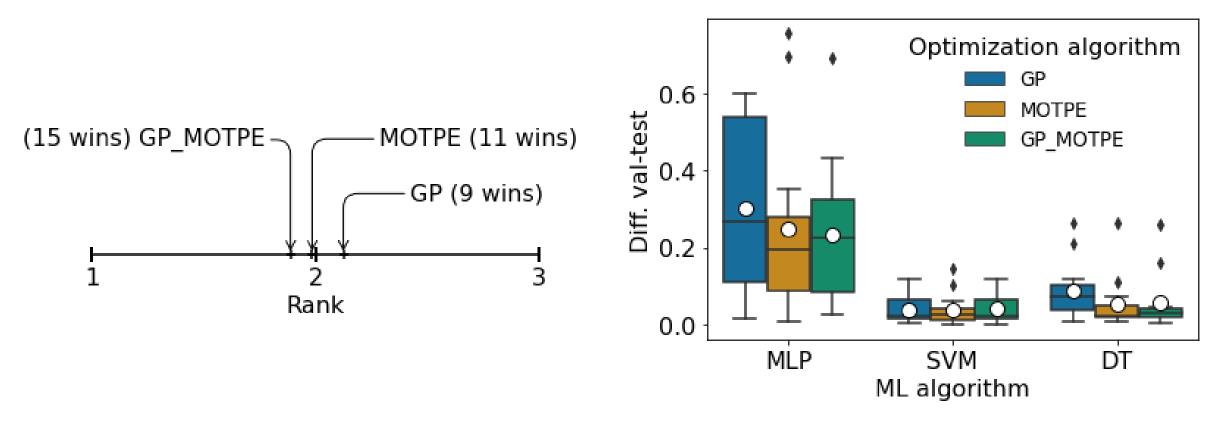
Results

Experiment 1: Analytical test functions (d=5). Hypervolume and Pareto front analysis



Results

Experiment 2: Hyperparameter optimization. Hypervolume and performance generalization analysis



- Our algorithm suggests a set of non-dominated HP configurations with the highest hypervolume in 15 trials
- HP configurations suggested by GPR are less reliable according to the difference between the validated and generalized hypervolume

Final remarks

- Hybrid algorithm that favour new HP configurations that are likely to be nondominated, and that are expected to cause the maximum improvement in the scalarized objective function
- Our approach performed relatively well on (general) analytical test problems, yet the
 performance on the considered HPO problems varies amongst datasets and ML
 algorithms (Not free lunch theorem)
- GP_MOTPE showed promising reliability properties (small changes in hypervolume when the ML algorithm is evaluated on the test set)

Future works

- Handling uncertainty directly with TPE
- Analyse the performance of our algorithm with different sources of uncertainty and in more complex problems

Thanks Q/A

Alejandro Morales-Hernández 1,2,*, Inneke Van Nieuwenhuyse 1,2, Gonzalo Nápoles 3

¹ Core Lab VCCM, Flanders Make, Belgium

² Data Science Institute, Hasselt University, Belgium

³ Department of Cognitive Science & Artificial Intelligence, Tilburg University, The Netherlands

