10/03/2025

function

&

[ YT T w———
O Mo prmance

s.t. 0.5 - Pf (x) £ 0

e

Multi-objective optimization of adhesive Motivation

. . . . .
bonding process in constrained and noisy <

settings I () oot botatutaticney
Aojanig orals-Hemandez = Imoke Van Niswweniuyse 2, Sabastan Rojas Gongalez 4, Joroen LR K LA Resutsiniighterbodies, now materias
Jordens ', Maartan Witers ¢, Bart Van Dorinck * .
 Flanders Make@UHasselt and Data Science Isttte, Hassek University, Belgium . =2 Whichtendto be more fragile, more difficult tojoin _
* Department of 3 Bel . . ]
> Suogate Madelng Lab, Ghet Universy. Boigum .
oDl L ° .. y ®77_ Therignt bonding process wil improve strength
i - e
. E
- . ¥ . » * Multi-objective optimization
. . o Minimize cost VS. Maximize tensile strength
. PY e o * Real experimentation is expensive and yield noisy outputs
e E # o The same process configuration generates different break strength/type of failure
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o 49 « Different types of failure
ﬁ . P v ™ \L * Adhesive, cohesive, or substrate failure
Efficiently find good process parameters with a minimal set of experiments, and
considering the trade-off between tensile strength and production cost
3 6 N * Gaussian Process Regression (GPR) to account for the heterogeneous noise
L | * Acquisition function to sequentially (one-by-one) suggest new process parameter
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Metamodel-based optimization

Goal:
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Metamodel-based optimization
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Gaussian Process with heteroscedastic noise

Mean of the
Function representation: process

[ =m(x) + M) +er(x)
Realization of a Gaussian

ith mean zero

Cov(yuyy) = k(xi,x))

unknown response
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Predictor and uncertainty estimator:
Spatial correlation among the new
point and the observed points
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Proposed approach

= Smartly choose next design point(s) for
expensive observation
o Particle Swarm Optimization
o Logistic classifier

= Outcome prediction at non-observed points
* Uncertainty estimate of outcomes

= Train a classifier

=GP model for noisy outputs

4- BUILD METAMODEL[s)
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= Any experiment with

noisy outcomes @

Simulator provided
by JMLab

= Smartly choose initial design
= Replicate to account for noise
= Latin hypercube sampling
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Experiment design
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Experiment design Results

Summary of the of the
P Min__Max bae
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Plasma speed 5 250 o e Hatton set PP S0
Distance 02 2 : Ee |t e
Number of passes 1 50 0 g«e 1! 5
Real time 1 120 £ El E39
FLE E; MO-GP
0 S
E |4 H --- MO-DGP
Mk
ol g38 CNSGA-II
. i Probabilty of being T <
Acquisition function feasi Root square of the 1 I —— GP-cNSGA-Il
GP prediction uncertainty prediction :
7

1 3.7
CMEI(x,) = MEI(x.) * P(y = 1|x) FOmin) =) +§(x,)¢(M et 20 40 60 730 1007 120
106 188 e 15 Number of expensive evaluations

206 2
iction Gost (i elros)
fofthebest @ —standard normal distribution
function value so far - @ —standard normal density Best, median and worst Pareto front obtained The evolution of the hypervolume indicator (mean +

for MO-GP. pi cati
= of 50 macro-replications

13 14

Results

4
Hypervolume indicator — MO-DGP (2.76) 16D+ — 10D (2 86} H 3
MO-GP (15! MO-GP|(2.08) 2 £]
g W—10-GP W GP-cNSGAN =1
1 z 3 4 1 2 3 4 300 50 o0 50 s00
Rank — GP-assisted NSGAI (2.84) Rank — GP-assisted NSGAI (2.54)
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Wilcoxon’s rank sum test shows a significant p value (a = 0.05) for differences between MO-GP and the other & . MO-GP SN GP-cNSGAN . MO-GP WS GP-cNSGAJ
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GP-cNSGA-II: 0, GP-cNSGA-II: 0.012, . pvalue: 418e-26 Probability distributions of the Pareto-
MO-DGP: 1.0e-05, MO-DGP: 1.8e-04, E optimal input values obtained by MO-GP
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Conclusions and future work

‘The use of machine learning techniques holds great promise in solving complex and expensive optimization
problems, as it allows to obtain high-quality solutions within a smaller number of experiments, compared
with evolutionary algorithms

The use of the infill criterion allows the algorithm to efficiently search for the Pareto-optimal process settings,
exploiting the information that has been learned from the already observed process settings (through the
GPR and LRC models)

Q Future research will focus on the inclusion of a third objective (minimization of the debonding break
strength), account for the uncertainty in the feasibility, and the deployment of an interactive tool for
real lab experiments.

Thanks
Q&A
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