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Motivation

Need for better fuel efficiency

Results in lighter bodies, new materials

Which tend to be more fragile, more difficult to join

The right bonding process will improve strength

• Multi-objective optimization
o Minimize cost VS. Maximize tensile strength

• Real experimentation is expensive and yield noisy outputs
o The same process configuration generates different break strength/type of failure

• Different types of failure
• Adhesive, cohesive, or substrate failure
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Efficiently find good process parameters with a minimal set of experiments, and 
considering the trade-off between tensile strength and production cost
•  Gaussian Process Regression (GPR) to account for the heterogeneous noise
• Acquisition function to sequentially (one-by-one) suggest new process parameter 

configurations to be evaluated. 
• GPR model and feasibility prediction)

Burned sample Adhesive failure Substrate failure

min [−TS(x), PC(x)]
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Metamodel-based optimization
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Gaussian Process with heteroscedastic noise

𝑓 𝑥 = 𝑚 𝑥 + 𝑀 𝑥

unknown response 
function

Mean of the 
process

Realization of a Gaussian 
random field with mean zero 
(covariance function)

Noise observed in 
replication r

𝐶𝑜𝑣 𝑦𝑖 , 𝑦𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗)

+𝜖𝑟(𝑥)

ො𝑦 𝑥∗ = 𝑘∗ 𝑲𝒏 + 𝚺𝝐
−𝟏 𝒀

predictor

Spatial correlation among the new 
point and the observed points

Covariance matrix of the n 
observed points Noise estimation for the n points

Observed response of the n points

Ƹ𝑠2 𝑥∗ = 𝑘∗∗  − 𝑘∗ 𝑲𝒏 + 𝚺𝝐
−𝟏 𝒌∗

𝑻

Uncertainty estimator

Covariance function applied to the new point and itself

Σ𝜖 = 𝐷𝑖𝑎𝑔
𝑉𝑎𝑟 𝑓 𝑥𝑖

𝑟𝑖
, 𝑖 ∈ {1, … , 𝑛}

Function representation:

Predictor and uncertainty estimator:

Proposed approach

▪ Smartly choose initial design

▪ Replicate to account for noise

▪ Latin hypercube sampling

▪ Any experiment with 
noisy outcomes

▪ Simulator provided 
by JMLab

▪ Augmented 
Tchebycheff 
scalarization

▪ Dynamically 
assignment of 
weights 

▪ GP model for noisy outputs

▪ Outcome prediction at non-observed points
▪ Uncertainty estimate of outcomes
▪ Train a classifier

▪ Smartly choose next design point(s) for 
expensive observation
o Particle Swarm Optimization
o Logistic classifier

𝑃(𝑦 = 1|𝒙; Θ) =
1

1 + 𝑒−Θ𝑇𝒙

Experiment design
NSGA-II with feasibility constraint * Constrained, mixed-integer and multi-objective 

optimization of building designs by NSGA-II with fitness 
approximation

* Bayesian approaches to surrogate-assisted evolutionary 
multi-objective optimization: A comparative study
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Experiment design
Process parameters Min Max

Pre-processing 0 1
Plasma power 300 500
Plasma speed 5 250
Distance 0.2 2
Number of passes 1 50
Real time 1 120

Acquisition function

MEI 𝑥∗ = መ𝑓 𝑦𝑚𝑖𝑛 − መ𝑓 𝑥∗ Φ
መ𝑓 𝑦𝑚𝑖𝑛 − መ𝑓 𝑥∗

Ƹ𝑠(𝑥∗)
+ Ƹ𝑠 𝑥∗ 𝜙

መ𝑓 𝑦𝑚𝑖𝑛 − መ𝑓 𝑥∗

Ƹ𝑠(𝑥∗)

GP prediction of the best 
observed function value so far

GP prediction
Root square of the 
uncertainty prediction

Φ −standard normal distribution
𝜙 −standard normal density

CMEI 𝑥∗ = 𝑀𝐸𝐼 𝑥∗ ∗ 𝑃(𝑦 = 1|𝒙)

Probability of being 
feasible

Summary of the parameters of the optimization approaches
Results

The evolution of the hypervolume indicator (𝑚𝑒𝑎𝑛 ±
𝑠𝑡𝑑

50
 of 50 macro-replications

Best, median and worst Pareto front obtained
for MO-GP.

Results

Hypervolume indicator IGD+

Wilcoxon’s rank sum test shows a significant p value (α = 0.05) for differences between MO-GP and the other 
algorithms:

GP-cNSGA-II: 0, 
MO-DGP: 1.0e-05, 

cNSGA-II: 0

GP-cNSGA-II: 0.012, 
MO-DGP: 1.8e-04, 
cNSGA-II: 0.0144)

Results

Probability distributions of the Pareto-
optimal input values obtained by MO-GP 
and GP-cNSGA-II, across 50 macro-
replications.
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Conclusions and future work

• The use of machine learning techniques holds great promise in solving complex and expensive optimization 
problems, as it allows to obtain high-quality solutions within a smaller number of experiments, compared 
with evolutionary algorithms 

• The use of the infill criterion allows the algorithm to efficiently search for the Pareto-optimal process settings, 
exploiting the information that has been learned from the already observed process settings (through the 
GPR and LRC models) 

❑ Future research will focus on the inclusion of a third objective (minimization of the debonding break 
strength), account for the uncertainty in the feasibility, and the deployment of an interactive tool for 
real lab experiments.

Thanks
Q & A
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